Circularity of graphs and continua: topology
نویسندگان
چکیده
منابع مشابه
Circularity of Planar Graphs
A circular cover of a graph G is a cover {X0, · · · , Xn−1} of the topological space G by closed connected subsets, indexed over Zn, with the following properties: Each element in the cover contains a vertex of G, each vertex of G is contained in at most two elements of the cover, and Xa ∩ Xb 6= ∅ if and only if b − a ∈ {−1, 0, 1}. The circularity of G is the largest integer n for which there i...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولOn the Topology of Grid Continua
One-dimensional and two-dimensional continua belong to the basic notions of settheoretical topology and represent a subfield of the theory of dimensions developed by P. Urysohn and K. Menger. In this paper basic definitions and properties of grid continua in R2 and R3 are summarised. Particularly, simple one-dimensional grid continua in R2 and in R3, and simple closed two-dimensional grid conti...
متن کاملAn Alexandroff topology on graphs
Let G = (V,E) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. In this paper, we associate a topology to G, called graphic topology of G and we show that it is an Alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. Then we investigate some properties of this topology. Our motivation is to give an e...
متن کاملan alexandroff topology on graphs
let g = (v,e) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. in this paper, we associate a topology to g, called graphic topology of g and we show that it is an alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. then we investigate some properties of this topology. our motivation is to give an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1981
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-112-2-103-110